Fluctuations of conserved charges in lattice QCD Péter Petreczky LQCD: chiral transition happens at $T_c \approx 154 \text{ MeV}$ What is deconfinement in QCD? At what temperature does it happen What is the nature of the deconfined matter? ⇒ Fluctuations of conserved charges Chemical freezout and fluctuations of conserved charges #### QCD thermodynamics at non-zero chemical potential #### Taylor expansion: $$\frac{p(T,\mu_B,\mu_Q,\mu_S)}{T^4} = \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{ijk}^{BQS} \cdot \left(\frac{\mu_B}{T}\right)^i \cdot \left(\frac{\mu_Q}{T}\right)^j \cdot \left(\frac{\mu_S}{T}\right)^k \quad \text{hadronic}$$ $$\frac{p(T, \mu_u, \mu_d, \mu_s)}{T^4} = \sum_{i,j,k} \frac{1}{i!j!k!} \chi_{ijk}^{uds} \cdot \left(\frac{\mu_u}{T}\right)^i \cdot \left(\frac{\mu_d}{T}\right)^j \cdot \left(\frac{\mu_s}{T}\right)^k \quad \text{quark}$$ $$\chi_{ijk}^{abc} = T^{i+j+k} \frac{\partial^i}{\partial \mu_a^i} \frac{\partial^j}{\partial \mu_b^j} \frac{\partial^k}{\partial \mu_c^k} \frac{1}{VT^3} \ln Z(T, V, \mu_a, \mu_b, \mu_c)|_{\mu_a = \mu_b = \mu_c = 0}$$ Taylor expansion coefficients give the fluctuations and correlations of conserved charges, e.g. $$\chi_2^X = \chi_X = \frac{1}{VT^3} (\langle X^2 \rangle - \langle X \rangle^2)$$ $$\chi_{11}^{XY} = \frac{1}{VT^3} (\langle XY \rangle - \langle X \rangle \langle Y \rangle)$$ information about carriers of the conserved charges (hadrons or quarks) ## Deconfinement: fluctuations of conserved charges $$\chi_B = \frac{1}{VT^3} \left(\langle B^2 \rangle - \langle B \rangle^2 \right)$$ baryon number $$\chi_Q = \frac{1}{VT^3} \left(\langle Q^2 \rangle - \langle Q \rangle^2 \right)$$ electric charge $$\chi_S = \frac{1}{VT^3} \left(\langle S^2 \rangle - \langle S \rangle^2 \right)$$ strangeness Ideal gas of massless quarks: $$\chi_B^{\text{SB}} = \frac{1}{3} \qquad \chi_Q^{\text{SB}} = \frac{2}{3}$$ $$\chi_S^{\mathrm{SB}} = 1$$ conserved charges carried by light quarks HotQCD: PRD86 (2012) 034509 BW: JHEP 1201 (2012) 138, conserved charges are carried by massive hadrons #### Deconfinement of strangeness Partial pressure of strange hadrons in uncorrelated hadron gas: $$P_S = \frac{p(T) - p_{S=0}(T)}{T^4} = M(T) \cosh\left(\frac{\mu_S}{T}\right) + B_{S=1}(T) \cosh\left(\frac{\mu_B - \mu_S}{T}\right) + B_{S=2}(T) \cosh\left(\frac{\mu_B - 2\mu_S}{T}\right) + B_{S=3}(T) \cosh\left(\frac{\mu_B - 3\mu_S}{T}\right)$$ $$v_2 = \frac{1}{3} \left(\chi_4^S - \chi_2^S \right) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$ #### should vanish! - v₁ and v₂ do vanish within errors at low T - v_1 and v_2 rapidly increase above the transition region, eventually reaching non-interacting quark gas values Bazavov et al, PRL 111 (2013) 082301 Strange hadrons are heavy ⇒ treat them as Boltzmann gas ## Quark number fluctuations at high T At high temperatures quark number fluctuations can be described by weak coupling approach due to asymptotic freedom of QCD - Lattice results converge as the continuum limit is approached - Good agreement between lattice and the weak coupling approach for 2nd and 4th order quark number fluctuations as well as for correlations Bazavov et al, PRD88 (2013) 094021, Ding et at, PRD92 (2015) 074043 #### What about charm hadrons? $$\chi_{nml}^{XYC} = T^{m+n+l} \frac{\partial^{n+m+l} p(T, \mu_X, \mu_Y, \mu_C) / T^4}{\partial \mu_X^n \partial \mu_Y^m \partial \mu_C^l}$$ Bazavov et al, Phys.Lett. B737 (2014) 210 #### Charm baryon to meson pressure $m_c \gg T$ only |C|=1 sector contributes In the hadronic phase all *BC*-correlations are the same! Hadronic description breaks down just above T_c \Rightarrow open charn deconfines above T_c The charm baryon spectrum is not well known (only few states in PDG), HRG works only if the "missing" states are included ## Quasi-particle model for charm degrees of freedom Charm dof are good quasi-particles at all T because $M_c >> T$ and Boltzmann approximation holds $$p^{C}(T, \mu_{B}, \mu_{c}) = p_{q}^{C}(T) \cosh(\hat{\mu}_{C} + \hat{\mu}_{B}/3) + p_{B}^{C}(T) \cosh(\hat{\mu}_{C} + \hat{\mu}_{B}) + p_{M}^{C}(T) \cosh(\hat{\mu}_{C})$$ $$\chi_{2}^{C}, \chi_{13}^{BC}, \chi_{22}^{BC} \Rightarrow p_{q}^{C}(T), p_{M}^{C}(T), p_{B}^{C}(T)$$ $$\hat{\mu}_{X} = \mu_{X}/T$$ Partial meson and baryon pressures described by HRG at T_c and dominate the charm pressure then drop gradually, charm quark only dominant dof at T>200 MeV ## The freeze-out temperature in heavy ion collisions #### Freeze-out temperature as function of baryon potential: $$T_f(\mu_B) = T_{f,0} \left(1 - \kappa_2^f \bar{\mu}_B^2 - \kappa_4^f \bar{\mu}_B^4 \right) \qquad \bar{\mu}_B \equiv \mu_B / T_{f,0}$$ $T_{f,0}, \kappa_2^f \Rightarrow$ charge and baryon number fluctuations $$R_{12}^{X}(T,\mu) \equiv \frac{M_{X}}{\sigma_{X}^{2}} = \frac{\chi_{1}^{X}(T,\mu)}{\chi_{2}^{X}(T,\mu)}$$ can be measured experimentally for baryon number and electric charge $$R_{12}^{QB} \equiv R_{12}^Q/R_{12}^B = r\sigma_B^2/\sigma_Q^2$$ can be calculated on the lattice LHS: RHS: LQCD $$R_{12}^{QB} = R_{12}^{QB,0} + \left(R_{12}^{QB,2} - \kappa_2^f T_{f,0} \frac{dR_{12}^{QB,0}}{dT} \Big|_{T_{f,0}} \right) \hat{\mu}_B^2$$ $$T_c = (145 - 155) \text{MeV} \qquad \kappa_f < \simeq 0$$ $s_{NN}^{1/2}[GeV]$ ## Summary - Hadron resonance gas (HRG) can describe various thermodynamic quantities at low temperatures - Deconfinement transition can be studied in terms of fluctuations and correlations of conserved charges, it manifest itself as a abrupt breakdown of hadronic description that occurs around the chiral transition temperature - Charm hadrons can exist above T_c and are dominant dof for T<180 MeV - For *T* > (300-400) MeV weak coupling expansion works well for certain quantities (e.g. quark number susceptibilities), more work is needed to establish the connection between the lattice and the weak coupling results - Comparison of lattice and HRG results for certain charm correlations hints for existence of yet undiscovered excited baryons - The freeze-out curve as function of baryon density can be determined from the the charge and baryon number fluctuations; the curvature of the freeze-out line is very small or even negative #### Back-up slides | | STAR0.8 | STAR2.0 | PHENIX/STAR2.0 | |-----------------------------|------------|------------|----------------| | a_{12} | 0.079(3) | 0.087(2) | 0.110(9) | | c_{12} | 0.858(101) | 0.329(74) | 0.559(352) | | $T_{f,0} \; [\mathrm{MeV}]$ | 145(2) | 147(2) | 155(4) | | $c_{12}^0(T_{f,0})$ | 0.343(31) | 0.326(32) | 0.265(52) | | $D_{12}(T_{f,0})$ | 7.04(44) | 6.62(36) | 5.27(78) | | κ_2^f | -0.073(16) | -0.001(12) | -0.056(67) | No quarks carrying both strangeness and charm \Rightarrow non-zero pressures in this sector implies bound charm strange bound states Charm-strange meson and baryon pressures are consisten with HRG at T_c $$p^{C,S}(T,\mu_B,\mu_S,\mu_C) = p_M^{C,S=1}(T)\cosh(\hat{\mu}_S + \hat{\mu}_C) + \sum_{j=1}^2 p_B^{C,S=j}(T)\cosh(\mu_B - j\mu_S + \mu_C).$$ Quark mass effects cancel in the ratio High T (*T*>250 MeV) : $\chi_{22}^{uc}\gg\chi_{13}^{uc}\sim\chi_{31}^{uc}\sim\chi_{11}^{uc}$ Low T: correlations are large (bound states?)